

SINAI-UGPLN at CheckThat! 2025: Meta-Ensemble Strategies for Numerical Claim Verification in English

Notebook for the CheckThat! Lab at CLEF 2025

Mariuxi del Carmen Toapanta-Bernabé^{1,2,†}, Miguel Ángel García-Cumbreras¹, Luis Alfonso Ureña-López¹, Denisse Desiree Mora-Intriago² and Carla Tatiana Bernal-García²

¹ Computer Science Department, SINAI, CEATIC, Universidad de Jaén, 23071, Jaén, Spain

² Universidad de Guayaguil, 090514, Guayas, Ecuador

Introduction – Challenges in Numerical Claim Verification

Finance domain

"The unemployment rate fell from 5.2 % to 5.0 % last quarter."

Original label **Conflicting**Predicted label **False**

Health domain

"Vaccination coverage exceeded 75 % by mid-year, up from 74.8 %"

Original label: **Confficting**

Predicted label False

High-stakes importance: Automated verification supports domains such as finance and public health, because decisions and investments are guided by precise data.

Three-way classification task: The CLEF 2025 task 3 requires assigning each claim to one of three labels—True, False or Conflicting—based on retrieved evidence.

Sensitive to small errors: Small quantitative inconsistencies (e.g., 5.2 % vs 5.0 %) can invert a claim's truth value, making robust models necessary.

Imbalanced dataset: Approximately 40 % True, 35 % False, 25 % Conflicting, challenging for training and evaluation.

Need for fine-grained numeric reasoning: Models must capture subtle numerical differences and handle imbalance to achieve reliable performance.

Task Description – CLEF 2025 Task 3: Numerical Claim Verification

Task: Classifying numerical claims as True, False, or Conflicting based on retrieved evidence.

Dataset Splits

Train: 9935 instances

Dev: 3084 instances.

DevTest: 2495 instances.

Evaluation Metrics: Macro-F1 (averaged across all labels), F1-OBJ (True/False), F1-SUBJ (Conflicting).

Three-Stage Meta-Ensemble Pipeline for **Numerical Claim Verification**

Stage 1 - Conflict Detector

Goal: Isolate conflicting claims.

Model: RoBERTa binary classifier (threshold-tuned).

Hugging Face **RoBERTa**

Techniques:

- Threshold tuning.
- Class-weighted loss.
- Light text augmentation.

Impact: High recall ensures most conflicting claims are captured early, reducing noise for later classification.

Output:

Conflicting (→ Stage 3) Non-conflicting (→ Stage 2)

Stage 2 - Sequence Classifier

Goal: Classify non-conflicting claims as True/False.

Model: RoBERTa sequence classifier (MNLI pre-trained, fine-tuned on pooled True/False data).

Hugging Face Roberta Mnli

Techniques:

- Threshold tuning.
- Class-weighted loss.

Impact: Improves precision/recall balance and provides calibrated scores for Stage 3.

Input: Non-conflicting claims from Stage 1.

Output:

Softmax (True/False) and hard label (→ Stage 3).

Stage 3 - Meta-classifier ensemble

Goal: Fuse predictions from stages 1, Stage 2 and additional models.

Model: Logistic Regression Meta-Classifer (ensemble fusion).

Techniques:

- Combines softmax and hard labels.
- Inputs: Stage 1 (Conflict) and Stage 2 (True/False).
- ☐ Threshold-tuned multi-class RoBERTa.
- Majority-voting ensemble of RoBERTa variants.

Impact: Robust and balanced predictions across classes.

Output:

Final classification (Conflicting / True / False).

Performance by Pipeline Stage for Numerical Claim Verification

Table 1 - Stage-wise performance

Stage	Precision	Recall	F1
1 – Conflict Detector	72.54%	93.65%	81.76%
2 – Sequence Classifier	≈ Balanced	≈ Balanced	Improved vs Stage 1
3 – Meta-Classifier Ensemble	Optimized	Optimized	Best overall

Conflict Detector (Stage 1): High recall (93.65%), ensuring most conflicting claims captured.

Sequence Classifier (Stage 2): Improved precision/recall balance with threshold tuning and MNLI fine-tuning.

Meta-Classifier Ensemble (Stage 3): Best overall performance, leveraging softmax and hard labels and diverse model fusion.

Robust performance across imbalanced classes; ensemble improved Macro-F1 significantly compared to individual models.

Experimental Results – Performance Evaluation

Table 2 – Dev split results for all system variants

_				
Variant	True F1	False F1	Conf F1	Macro-F1
Threshold tuning $(t_{\text{true}}=0.420, t_{\text{false}}=0.460)$	0.1693	0.4948	0.3374	0.5936
Ensemble voting	0.1693	0.4948	0.3374	0.3338
Meta-classifier (batch encoding + mapping)	0.4123	0.7505	0.1599	0.4409

Table 3 – Top-5 systems on DevTest + UGPLN (ours)

System	DevTest Macro-F1	Rank
tsdlovehta	0.5954	1
prasannad28	0.5612	2
Bharatdeep_Hazarika	0.5570	3
DSGT-CheckThat	0.5210	4
Fraunhofer_SIT	0.5100	5
UGPLN (submitted)	0.4553	8

Meta-classifier ensemble achieved the best Macro-F1 on Dev, while our UGPLN system ranked 8th on DevTest (Macro-F1 = 0.4553).

Discussion

The ensemble meta-classifier achieved the best overall balance, but handling Conflicting claims remains the main challenge.

0.750

Meta-classifier (batch enc. + mapping)

0.160

0.412

0.495

Ensemble voting

0.337

Conclusions

- We proposed a three-stage pipeline consisting of conflict detection, true/false classification and ensemble fusion.
- The ensemble meta-classifier achieved the highest Macro-F1, clearly outperforming single models.
- In the official CLEF 2025 evaluation, our system SINAI and UGPLN ranked within the Top-10 on the DevTest leaderboard

Future Work

- Extend evaluation to other languages and domains.
- Explore lighter and interpretable models for real-time factchecking (Project FCI-079-2023 Universidad de Guayaquil about Fake News in Ecuador)
- Optimize the ensemble strategy with more diverse model variants and adaptive thresholding.

Acknowledgements

CONSENSO MODERATES SocialTox

Thanks you